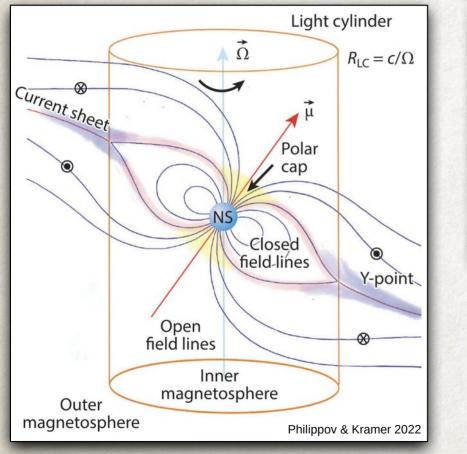
Sub-GHz Radio Pulsar Emission -Lessons Learned and Predictions for SKA

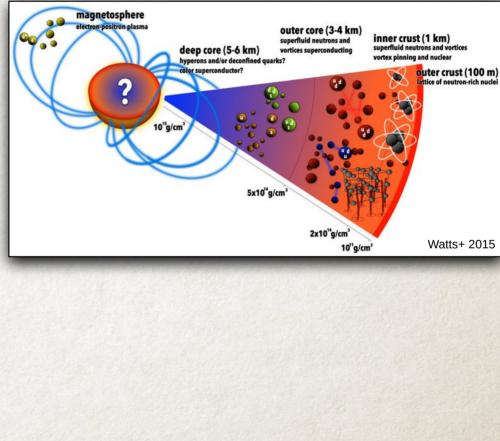
Fabian Jankowski Paris Observatory, LPC2E, CNRS

Talk Outline

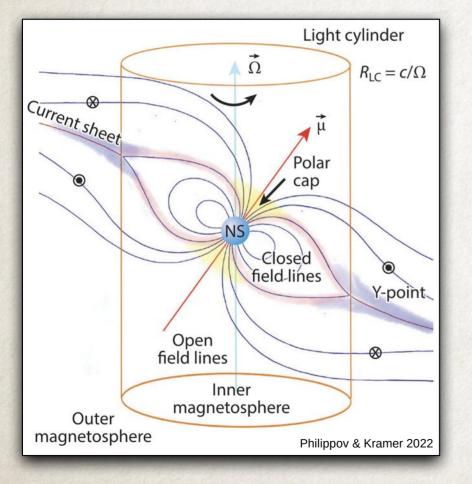
1. Motivation

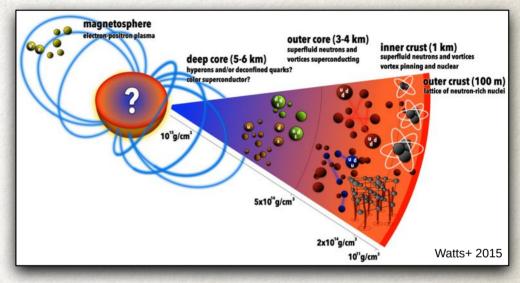
- 2. Lessons Learned and Selected Results
- 3. Predictions for SKA AA*
- 4. Conclusions



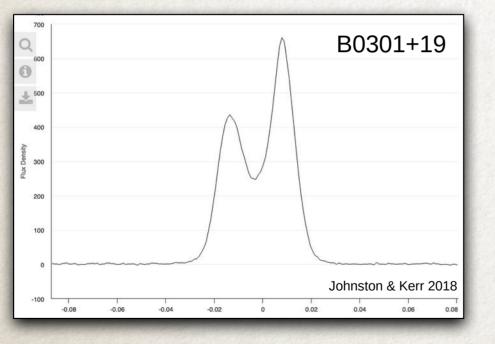

Fabian Jankowski

1. Motivation


Fabian Jankowski


How does the Pulsar Radio Emission Work?

How does the Pulsar Radio Emission Work?



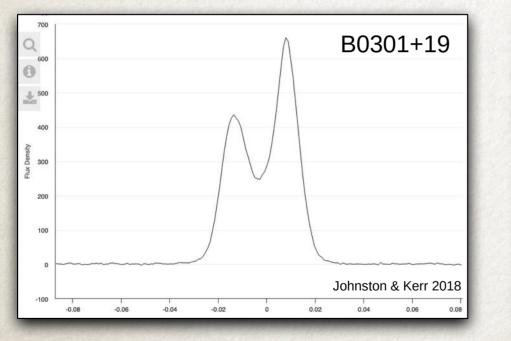
- How do pulsars shine?
- What is the radio emission mechanism?
- Where does the emission originate?
- How can its magnetosphere create the vast array of pulsar phenomena?
- How is a pulsar beam structured? Patchy vs hollow cone?

Integrated Pulse Profile vs Single Pulses

Integrated profile

O(10k) pulses averaged, stable fingerprint

Integrate to increase S/N


Integrated Pulse Profile vs Single Pulses

Integrated profile

O(10k) pulses averaged, stable fingerprint

Individual single pulses

Pulse variability due to changes in magnetosphere

22 s time series

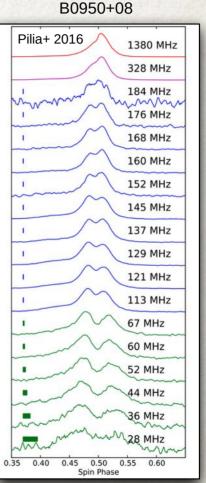
Lorimer & Kramer

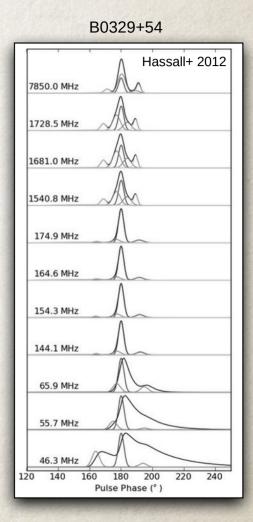
Fig. 1.1. A 22 s time series from the Arecibo radio telescope showing single pulses from PSR B0301+19. Insets show expanded views of selected pulses.

Cannot integrate, instantaneous gain crucial

Integrate to increase S/N

2. Lessons Learned and Selected Results

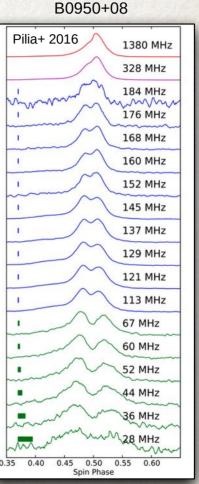

Relevant for SKA-Low and SKA-Mid Band-1

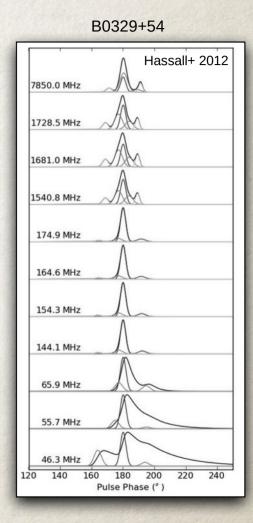


Fabian Jankowski

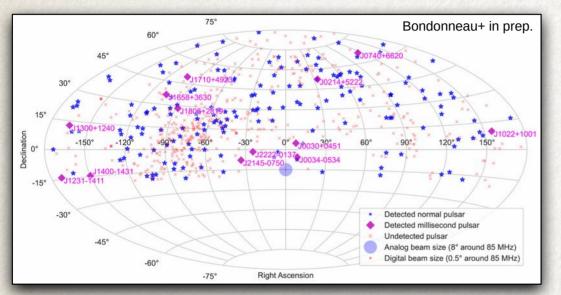
Early Low-Frequency Work

- 2012 2020
- Pulse profiles (Hassall+ 2012, Pilia+ 2016, Kondratiev+ 2016, Bilous+ 2020, Bondonneau+ 2020)
- Profile evolution (Hassall+ 2012, Pilia+ 2016)
- Radio spectra (Bilous+ 2016, 2020, Kondratiev+ 2016)
- Polarisation (Noutsos+ 2015)
- LOFAR (above), MWA (e.g. Bhat+ 2018), LWA (e.g. Stovall+ 2015), UTR-2 (e.g. Zakharenko+ 2013), GMRT (e.g. Basu+ 2016)

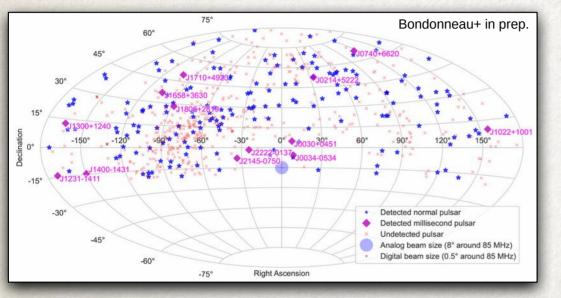




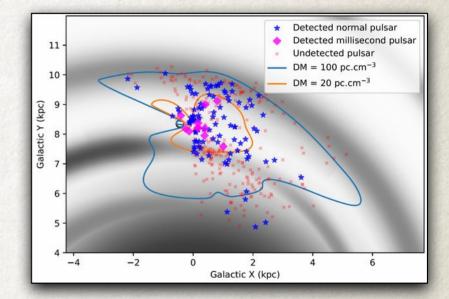
Early Low-Frequency Work


- 2012 2020
- Pulse profiles (Hassall+ 2012, Pilia+ 2016, Kondratiev+ 2016, Bilous+ 2020, Bondonneau+ 2020)
- Profile evolution (Hassall+ 2012, Pilia+ 2016)
- Radio spectra (Bilous+ 2016, 2020, Kondratiev+ 2016)
- Polarisation (Noutsos+ 2015)
- LOFAR (above), MWA (e.g. Bhat+ 2018), LWA (e.g. Stovall+ 2015), UTR-2 (e.g. Zakharenko+ 2013), GMRT (e.g. Basu+ 2016)
- Focussed mostly on pulsar detectability and integrated profiles

Census observations important. What pulsars are observable and how do they look like?



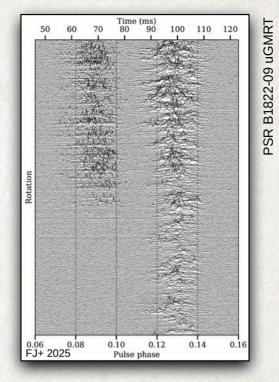
Pulsar Emission at the Lowest Radio Frequencies NenuFAR Pulsar Census



- Early science (~50 % collecting area)
- ~700 known pulsars observed at 10–85 MHz
 - $\delta \ge -20 \text{ deg}$, DM $\le 100 \text{ pc cm}^{-3}$
- ~180 canonical pulsars detected, ~100 for the first time below 100 MHz
- 13 MSPs detected, 10 for the first time below 100 MHz
- >24 PSRs in single pulses

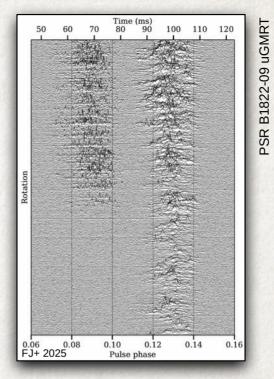
Pulsar Emission at the Lowest Radio Frequencies NenuFAR Pulsar Census

- Early science (~50 % collecting area)
- ~700 known pulsars observed at 10–85 MHz
 - $\delta \ge -20 \text{ deg}$, DM $\le 100 \text{ pc cm}^{-3}$
- ~180 canonical pulsars detected, ~100 for the first time below 100 MHz
- 13 MSPs detected, 10 for the first time below 100 MHz
- >24 PSRs in single pulses


- Evidence for selecting steeper spectral index pulsars (v.d. Wateren+ 2023)
- First leap for VHF pulsar science

Despite this, low-frequency pulsar sky is still underexplored. Excellent SKA-Low sensitivity will help.

Credit: L. Bondonneau


Single Pulse Work

- Including NenuFAR (Bilous+ 2022)
- GMRT projects (Mitra+, Basu+, Polish teams)
- Arecibo P-band (Rankin+)
- SUSPECT Project (FJ+, 2023 present)
 - Spin-off work (Limaye+ in prep.)

Single Pulse Work

- Including NenuFAR (Bilous+ 2022)
- GMRT projects (Mitra+, Basu+, Polish teams)
- Arecibo P-band (Rankin+)
- SUSPECT Project (FJ+, 2023 present)
 - Spin-off work (Limaye+ in prep.)
- Still discovering new phenomena (e.g. *swooshing*, amplitude modulation, weak or rare modes, profile components)
 - Better data
 - Refined data analysis methods
 - 'Looking at things' (more eyeballs on data)

Single Pulse Work

- Including NenuFAR (Bilous+ 2022)
- GMRT projects (Mitra+, Basu+, Polish teams)
- Arecibo P-band (Rankin+)
- SUSPECT Project (FJ+, 2023 present)
 - Spin-off work (Limaye+ in prep.)
- Still discovering new phenomena (e.g. *swooshing*, amplitude modulation, weak or rare modes, profile components)
 - Better data
 - Refined data analysis methods
 - 'Looking at things' (more eyeballs on data)
- Similarities with magnetars and FRBs

The SUSPECT Project

Science Using Single-Pulse Exploration with Combined Telescopes (SUSPECT)

I. The mode-switching, flaring, and single-pulse morphology of PSR B1822-09

F. Jankowski^{1*}, J.-M. Grießmeier^{1,2}, M. Surnis³, G. Theureau^{1,2,4}, and J. Pétri⁵

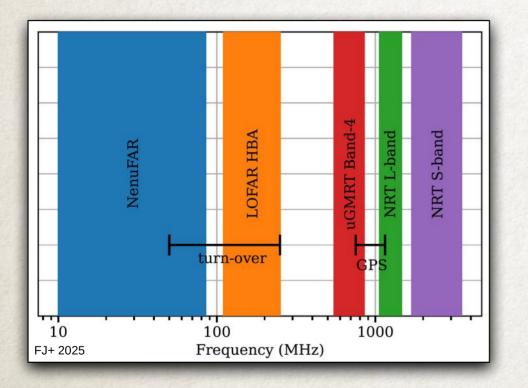
With Killian Lebreton & Elie Daoura (M2 students), Louis Bondonneau, Pauline Noé, NenuFAR pulsar team

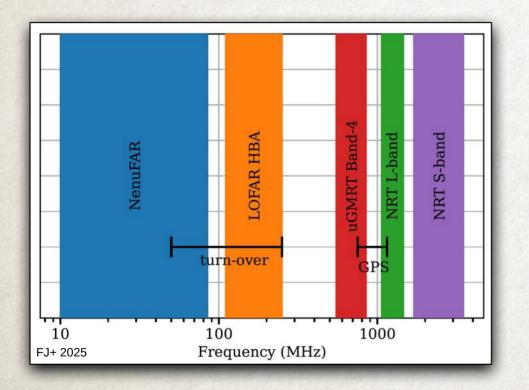
Jankowski+ 2025

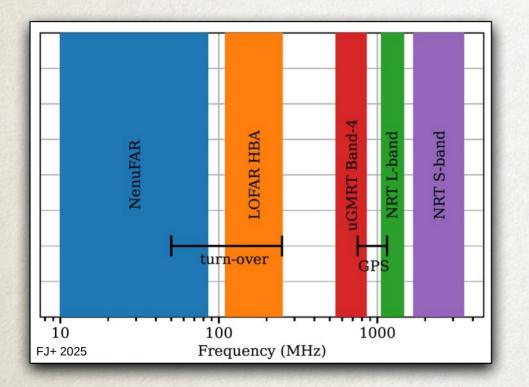
The SUSPECT Project

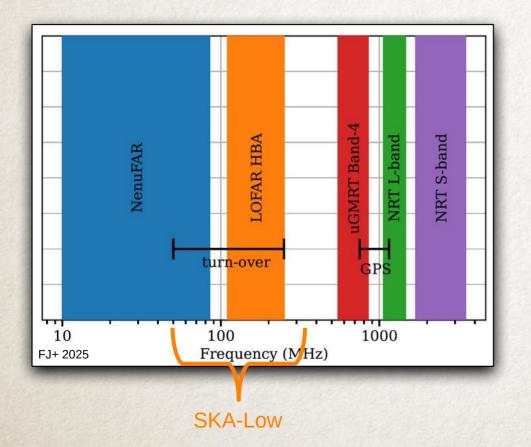
Science Using Single-Pulse Exploration with Combined Telescopes (SUSPECT)

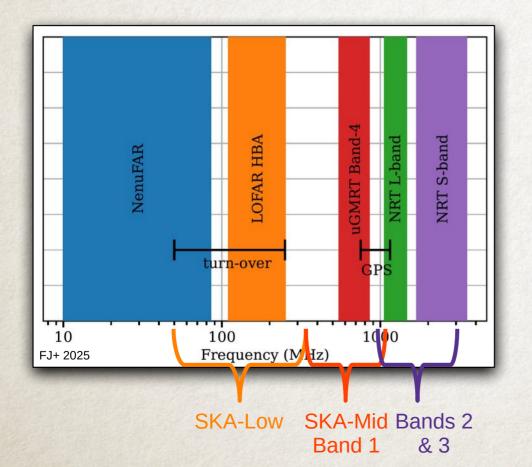
I. The mode-switching, flaring, and single-pulse morphology of PSR B1822-09


F. Jankowski^{1*}, J.-M. Grießmeier¹², M. Surnis³, G. Theureau^{1, 2, 4}, and J. Pétri⁵

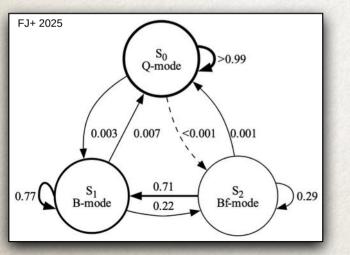

With Killian Lebreton & Elie Daoura (M2 students), Louis Bondonneau, Pauline Noé, NenuFAR pulsar team

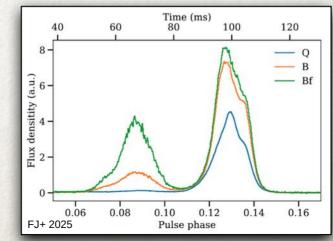

Jankowski+ 2025



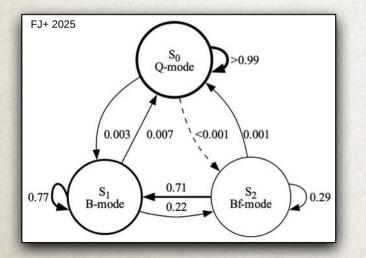

- Aims
 - Understanding the wide-band singlepulse properties of radio pulsars
 - Study single-pulse properties (PE distributions, modulation)
 - Others: pulse profiles, radius-tofrequency mapping

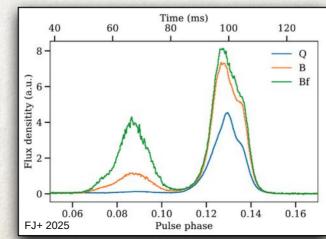
- Aims
 - Understanding the wide-band singlepulse properties of radio pulsars
 - Study single-pulse properties (PE distributions, modulation)
 - Others: pulse profiles, radius-tofrequency mapping
- Focus on mode switching and sub-pulse drifting pulsars
 - Master's M2R projects
 - 2023: Killian Lebreton
 - 2024: Elie Daoura

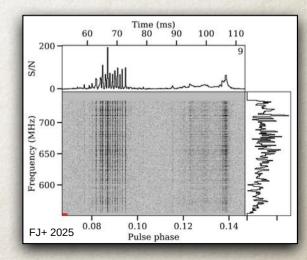



- Aims
 - Understanding the wide-band singlepulse properties of radio pulsars
 - Study single-pulse properties (PE distributions, modulation)
 - Others: pulse profiles, radius-tofrequency mapping
- Focus on mode switching and sub-pulse drifting pulsars
 - Master's M2R projects
 - 2023: Killian Lebreton
 - 2024: Elie Daoura

- Aims
 - Understanding the wide-band singlepulse properties of radio pulsars
 - Study single-pulse properties (PE distributions, modulation)
 - Others: pulse profiles, radius-tofrequency mapping
- Focus on mode switching and sub-pulse drifting pulsars
 - Master's M2R projects
 - 2023: Killian Lebreton
 - 2024: Elie Daoura

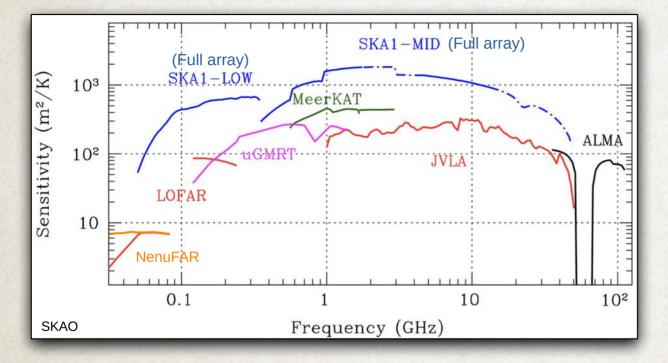

- Modelling the mode switching phenomenon
 - Hidden Markov Model with autoregressive emissions (atomic transitions)
 - Investigated other new approaches





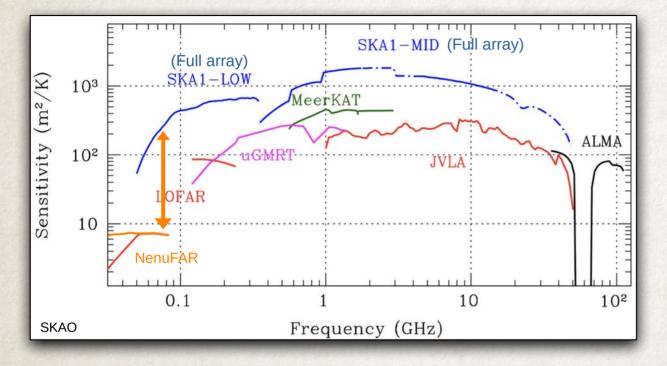
- Modelling the mode switching phenomenon
 - Hidden Markov Model with autoregressive emissions (atomic transitions)
 - Investigated other new approaches

- Microstructure analysis & modulation
- Also: PE distributions, 2D amplitude distribution, profile evolution, sub-pulse drifting

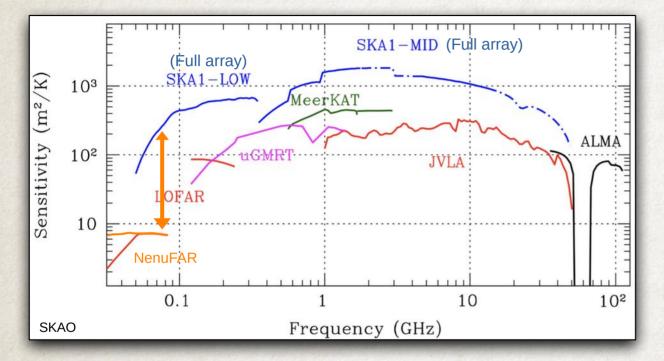


4. Predictions for SKA AA*

Fabian Jankowski



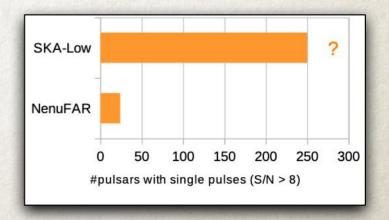
Instantaneous Sensitivity and Frequency Coverage


- Scaling for AA*
 - Low: 60 % (307 / 512 stations)
 - Mid: 73 % (80 + 64) / 197 dishes

Instantaneous Sensitivity and Frequency Coverage

- Scaling for AA*
 - Low: 60 % (307 / 512 stations)
 - Mid: 73 % (80 + 64) / 197 dishes
- Essentially
 - ~4x LOFAR HBA
 - ~20x LOFAR LBA
 - ~2x uGMRT Band-4
 - ~2x MeerKAT UHF
- Also
 - Better RFI environment
 - Wider instantaneous bandwidths

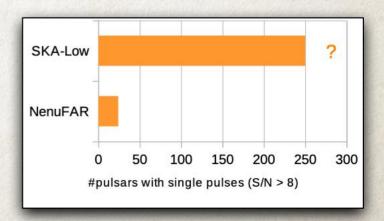
Instantaneous Sensitivity and Frequency Coverage


 Instantaneous sensitivity crucial for single pulse studies (cannot integrate)

- Scaling for AA*
 - Low: 60 % (307 / 512 stations)
 - Mid: 73 % (80 + 64) / 197 dishes
- Essentially
 - ~4x LOFAR HBA
 - ~20x LOFAR LBA
 - ~2x uGMRT Band-4
 - ~2x MeerKAT UHF
- Also
 - Better RFI environment
 - Wider instantaneous bandwidths

Pulsar science at LBA – HBA frequencies will receive huge boost.

Predictions for SKA-Low and Mid Band-1


- SKA will allow:
 - High-S/N single-pulse studies of a larger pulsar sample
 - Study the known pulsars in greater detail
 - And for longer durations (subarrays)
- Examples:
 - Thousand Pulsar Array (see previous talks)
 - GMRT projects
 - SUSPECT Project

Predictions for SKA-Low and Mid Band-1

- SKA will allow:
 - High-S/N single-pulse studies of a larger pulsar sample
 - Study the known pulsars in greater detail
 - And for longer durations (subarrays)
- Examples:
 - Thousand Pulsar Array (see previous talks)
 - GMRT projects
 - SUSPECT Project

- We expect to discover:
 - Many more peculiar pulsars
 - Known phenomena in more pulsars (nulling, mode switching, drifting, giant pulses, *swooshing*)
 - New single-pulse phenomena in new and known pulsars
 - More (types of) profile variability

SKA Northern Hemisphere Synergies

- Complementary pulsar programmes with northern hemisphere telescopes
 - GBT, NRT, FAST+, CHIME, CHORD, DSA-2000, Effelsberg, LOFAR 2.0, NenuFAR, JBO, JVLA

CHIME CHIME CHIME CHIME CHIME & CHORD

NRT & NenuFAR & LOFAR

FJ

Need Improved Data Analysis Tools

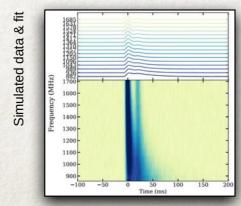
As we enter the SKA AA* era

- Excellent data quality (S/N)
- Wide fractional bandwidths
 - 300 MHz Low; >700 MHz Mid

Need Improved Data Analysis Tools

As we enter the SKAAA* era

- Excellent data quality (S/N)
- Wide fractional bandwidths
 - 300 MHz Low; >700 MHz Mid
- Data analysis tools must keep up!
 - Sensitivity to more subtle physical effects
 - Wide bandwidths & profile evolution
 - Inherent assumptions
 - Objective classification
 - Runtime performance
 - Verification
 - Systematics


Need Improved Data Analysis Tools

As we enter the SKAAA* era

- Excellent data quality (S/N)
- Wide fractional bandwidths
 - 300 MHz Low; >700 MHz Mid
- Data analysis tools must keep up!
 - Sensitivity to more subtle physical effects
 - Wide bandwidths & profile evolution
 - Inherent assumptions
 - Objective classification
 - Runtime performance
 - Verification
 - Systematics

Our Efforts

- spanalysis (Python) Single pulse data analysis suite
- Mode switching detector (Python) Hidden Markov switching model
- *fitpdf* (Python) Bayesian unbinned distribution fitting
- scatfit (Python & Cython) Pulse/FRB simulation and scattering fit suite

Jankowski+ 2023 ASCL: 2208.003

https://github.com/fjankowsk/scatfit

5. Conclusions

Fabian Jankowski

Conclusions

Challenges

- DM(t)
- Scattering
- Sky temperature
- Sensitivity
- Software tools

Predictions

- Huge sensitivity jump below 100 MHz
- Large increase < 1 GHz
- Larger sample of PSRs
- Discover new singlepulse phenomena
- More types of profile variability

Synergies

- Complementary with northern hemisphere pulsar programmes
- Well aligned with upcoming (survey) telescopes

fabian.jankowski@cnrs-orleans.fr