Absolute Flux Density Calibration

Motivation

- Absolute flux densities
- Radio spectra
- Absolute pulse energies, pulseenergy distributions
- Survey sensitivity
- Non-detection upper limits (FRBs, LPTs, other transients)

⁽Parkes & literature, FJ+ 2018)

Fabian Jankowski

fabian.jankowski@cnrs-orleans.fr

Paris Obs, LPC2E, CNRS

General Approach

- Use the radiometer equation and known system parameters
- Dewey et al. 1985, Lorimer & Kramer 2012
- Work out counts to Jansky mapping

Folded

$$S_{\nu} = \mathrm{S/N} \ \beta \ \frac{T_{\mathrm{sys}} + T_{sky}}{G\sqrt{BN_{\mathrm{p}}t}} \sqrt{\frac{\delta}{1-\delta}},$$

(UTMOST, FJ+ 2019)

Single

$$S_{\text{peak}} (\text{S/N}, \text{W}_{\text{eq}}, \vec{a}) = \text{S/N} \beta \eta_{\text{b}} \frac{T_{\text{sys}} + T_{\text{sky}}}{G \sqrt{b_{\text{eff}} N_{\text{p}} W_{\text{eq}}}} a_{\text{CB}}^{-1} a_{\text{IB}}^{-1},$$

Telescope Performance Parameters

1)SEFD: $S_{sys}(f) = T_{sys} / G$ (sensitivity vs frequency) – bandpass calibration

2) Telescope gain curve (sensitivity vs elevation) – temporal calibration

Example for UTMOST, fit to pulsar transit data.

$$\eta(m,n) = \left[\frac{a_{\rm m}}{\cos(m-m_0)} + b_{\rm m}\right] \left[a_{\rm n}(n-n_0)^2 + b_{\rm n}\right].$$

(UTMOST, FJ+ 2019)

m, n analogue to zenith and azimuth angles.

Fabian Jankowski

Other Examples

Sky Temperatures

- Investigated several different diffuse sky models
- Haslam et al. map & spectral index is not too bad
- However, accurate model is much preferred at NenuFAR frequencies
 - T_{sky} dominates in the T_{sys} + T_{sky} term

uGMRT Pulsar Calibration

uGMRT Pulsar Calibration

uGMRT Bandpass Calibration

Verification with uGMRT Synthesis Images

Fabian Jankowski

Almost perfect agreement so far.

LOFAR Pulsar Calibration

- LOFAR FR606 HBA
- PSR B2217+47 rising in elevation
- Large scatter in single-pulse fluences
- Running medians (red lines) smoothly rising
- Geometric projection effect
- Modelled as ~sin^b(el) with b = -1.39

LOFAR Pulsar Calibration

- LOFAR FR606 HBA
- PSR B2217+47 rising in elevation
- Large scatter in single-pulse fluences
- Running medians (red lines) smoothly rising
- Geometric projection effect
- Modelled as ~sin^b(el) with b = -1.39

NenuFAR

- All computed using nenupy software
- Colours map to elevations: 90, 60, 30 deg
- SEFD contains a location independent T_{sky} by default
 - Would be better to add T_{sky} later

NenuFAR Gain Curve

- G(el, freq) / G(90 deg, freq)
- Computed using nenupy
- NenuFAR core (without remote MAs)
- Too simplistic?
- Can we measure it?
 - Quasars preferred, can use pulsars

Fabian Jankowski

NenuFAR Questions

- Need accurate SEFD curve
 - How are the parameters in nenupy measured?
 - Why do they include T_{sky}?
- Need measured elevation-gain curve
 - Best to use quasar transits
 - Can verify calibration using pulsar transits
- Need NenuFAR's phasing or beam-forming efficiency
 - Have we measured this?
 - Observe a source and iteratively increase the number of MAs included
- What about the (chromatic?) telescope mis-pointing?
 - Some pulsars vanished (>6 dB)