Fast Radio Burst Science with the MeerKAT Telescope Leading into the SKA Era

Fabian Jankowski
Researcher
LPC2E, CNRS, Université d'Orléans

Contact fabian.jankowski@cnrs-orleans.fr https://fabian.jankowskis.org

Talk Outline

- 1. Motivation
- 2. FRB Discovery & Localisation with MeerTRAP
- 3. Do FRBs Exhibit X-ray Emission?
- 4. Preparation for SKA
- 5. Conclusions

1. Motivation

FRB Progenitor Mystery. What Creates FRBs?

- What are their progenitors?
- Are there multiple classes of FRBs?
- Are the repeating and non-repeating FRBs from different objects?
- What is the physical mechanism that generates the bursts (high brightness temperature)?
- What other applications are there for FRBs?

FRB Progenitor Mystery. What Creates FRBs?

- What are their progenitors?
- Are there multiple classes of FRBs?
- Are the repeating and non-repeating FRBs from different objects?
- What is the physical mechanism that generates the bursts (high brightness temperature)?
- What other applications are there for FRBs?

Shaw Prize in Astronomy 2023! "Nobel of the East"

Shaw Prize

FRBs are Ideal Cosmological Probes

- Study the missing baryons
- Independent measurement of cosmological parameters,
 e.g. matter density and Hubble constant H₀.
 - Independent "vote" on Hubble tension
- Determine the re-ionisation history of the Universe
- Plasma lensing & gravitational lensing

FRBs are Ideal Cosmological Probes

- Determitegalaxysredshift(optical)Universe
- Plasma lensing & gravitational lensing

FRBs are Ideal Cosmological Probes

Plasma lensing & gravitational lensing

2. FRB Discovery & Localisation with MeerTRAP

On behalf of the MeerTRAP team

MeerTRAP and Friends

- Ben Stappers
- Tiaan Bezuidenhout
- Manisha Caleb
- Laura Driessen
- Fabian Jankowski
- Mateusz Malenta*
- Vincent Morello*
- Inés Pastor-Marazuela
- Kaustubh Rajwade
- Sotiris Sanidas*
- Mayuresh Surnis
- Jun Tian

- Ewan Barr
- Marina Berezina
- Weiwei Chen
- Michael Kramer
- Jason Wu

- Aris Karastergiou
- Chris Williams

- Karel Adamek
- Wes Armour
- Cees Carels
- Jan Novotny

- Thomas Abbott
- Sarah Buchner
- Fernando Camilo
- David Horn
- Anton Joubert
- Jason Manley
- Simon Ratcliffe
- Maciej Serylak
- Lance Williams

Credit: Ben Stappers

Finding and Localising FRBs with the MeerKAT Telescope

Commissioned the MeerTRAP Instrument at MeerKAT

FJ

- Primary aims
 - Understanding what creates FRBs
 - Localising FRBs to their host galaxies

Finding and Localising FRBs with the MeerKAT Telescope

Commissioned the MeerTRAP Instrument at MeerKAT

- Primary aims
 - Understanding what creates FRBs
 - Localising FRBs to their host galaxies
- Several million EUR project with various partner institutes (Bonn, Oxford, SARAO)
- Installed high performance servers at telescope site (user-supplied equipment)
- Designed, implemented, and commissioned observing & search software
- Scientific exploitation

The MeerTRAP Project

- Fully-commensal project
 - Piggybacks almost all projects
 - Huge amount of time on sky and sky coverage (~20,000 h over 5 yr)
- Real-time transient detection
- Excellent sensitivity (T_{sys} ~ 23 K, A_e/T_{sys} ~
 6.5 m²/K at L-band)

The MeerTRAP Project

- Fully-commensal project
 - Piggybacks almost all projects
 - Huge amount of time on sky and sky coverage (~20,000 h over 5 yr)
- Real-time transient detection
- Excellent sensitivity (T_{sys}~ 23 K, A_e/T_{sys}~
 6.5 m²/K at L-band)

- Two surveys at the same time
 - Incoherent beam, ~1 deg² FoV,
 Parkes sensitivity
 - ~800 coherent beams, ~0.2 deg²
 FoV, GBT sensitivity
- Operating since late 2020

The MeerTRAP Project

- Fully-commensal project
 - Piggybacks almost all projects
 - Huge amount of time on sky and sky coverage (~20,000 h over 5 yr)
- Real-time transient detection
- Excellent sensitivity ($T_{sys} \sim 23 \text{ K, A}_e/T_{sys} \sim 6.5 \text{ m}^2/\text{K}$ at L-band)

- Two surveys at the same time
 - Incoherent beam, ~1 deg² FoV,
 Parkes sensitivity
 - ~800 coherent beams, ~0.2 deg²
 FoV, GBT sensitivity

The First FRB Sample Discovered

FJ+ 2023; Rajwade+ 2022; Driessen+ 2024; Caleb+ 2023

arXiv: 2302.10107; 2302.09787; 2302.09754

Fast Radio Burst Types

Unresolved

Scattered

Complex

FRB Localisation is Crucial

- 1) Multi-beam triangulation
 - SeeKAT software
 - Based on (non) detection in neighbouring beams
- 2) Synthesis imaging & voltage buffer

FRB Localisation is Crucial

- 1) Multi-beam triangulation
 - SeeKAT software
 - Based on (non) detection in neighbouring beams
- 2) Synthesis imaging & voltage buffer
- Precision
 - Single-beam: ~0.9 arcmin²
 - Multi-beam: O(100) arcsec²
 - Synthesis image or voltage buffer: O(1) arcsec²

FRB - Host Galaxy Association

- Aim: Host galaxy spectroscopic redshift
- Two distance measurements
- Calibrate DM_{cosmic} redshift relation
- Probabilistic Association of Transients to their Hosts (PATH) software

Scattering

Scattering

- 3 FRBs show significant scattering
- · 1 shows hint
- Several limited by DM smearing
- Close to Kolmogorov

Scatfit Scattering Fit and Simulation Software

- Developed for low-S/N FRB data (S/N ≤ 30)
 - Reads data at native time & freq. resolution
 - Includes treatment of instrumental effects

2024 **Driessen+**

https://github.com/fjankowsk/scatfit

Scatfit Scattering Fit and Simulation Software

- Developed for low-S/N FRB data (S/N ≤ 30)
 - Reads data at native time & freq. resolution
 - Includes treatment of instrumental effects

Driessen+ 2024

- · Recently adapted for pulsar data
- Supports standard FRB & pulsar data formats (SIGPROC, PSRFITS, Timer)
 - Verified on data from MeerKAT, NenuFAR, LOFAR, GMRT, NRT

PSR B0355+54 with NenuFAR

Jankowski+ 2023 ASCL: 2208.003

4. Do FRBs Exhibit X-ray Emission?

On behalf of Eppel, Kadler, Krumpe & team

XMM-Newton – MeerKAT FRB Search Project

Aims

- Shadow XMM-Newton pointings on nearby (redshift < 0.2) galaxies with MeerKAT
- Detect bright magnetar flares

XMM-Newton – MeerKAT FRB Search Project

Aims

- Shadow XMM-Newton pointings on nearby (redshift < 0.2) galaxies with MeerKAT
- Detect bright magnetar flares
- Motivated by Galactic "FRB" X-ray burst connection (SGR 1935+2154)
- Team: PI Eppel, Uni Würzburg, D-MeerKAT, X-ray experts, FJ Technical Lead
- 20 hours of MeerKAT time granted in 2023/24
- Running since December 2023
 - No detection so far

ESA. XMM-Newton

Fabian Jankowski

5. Preparation for SKA

Preparation for the SKA Era

- MeerKAT is a SKA-mid precursor
 - Will be integrated into SKA-mid
- Test for SKA
 - Commensal science (transient searches)
 - Real-time data processing
- SKA will allow:
 - More FRBs (logN-logS & sub-arrays)
 - Detailed FRB repeater follow-up

Preparation for the SKA Era

- MeerKAT is a SKA-mid precursor
 - Will be integrated into SKA-mid
- Test for SKA
 - Commensal science (transient searches)
 - Real-time data processing
- SKA will allow:
 - More FRBs (logN-logS & sub-arrays)
 - Detailed FRB repeater follow-up

- Software development that directly leads into SKA SDP
 - Single-pulse search pipeline (AstroAccelerate)
 - Control and monitoring system
- Interfaced well with South African SARAO team

6. Conclusions

Conclusions and Other Work

- Dozens of FRBs
- Robust FRB host galaxy associations

Driessen+ 2024, Caleb+ 2023, Rajwade+ 2022, 2024

- Propagation effects (scattering, scintillation)
- Cosmology
- Multi-wavelength observations are important

Other work not mentioned

Discovered first MeerKAT FRB repeater!

Jun+ 2024

- Discovered many Galactic transients
 - Slow 76-s pulsar

Caleb+ 2022, NatAstro

Highly intermittent pulsar or magnetar

Surnis+ 2023

Pulsars & RRATs

Bezuidenhout+ 2023, Turner+ submitted ___

Extra Slides

Host Galaxies - MTP0019

- Sub-arcsec localisation
- Galactic vs extragalactic?
- Faint optical source and persistent radio source,7.4" offset
- Galaxy obscured by foreground star. Starforming spiral
- $z_{spec} = 0.066$
- Host DM ~30 units

arXiv: 2302.09787

Cosmology with FRBs

Figure 3. FRB constraints on the full reionization history. We show the posterior (orange) and prior (purple) contours of the reionization history $x_i(z)$ derived from 1000 localized FRBs and including the additional constraint $\tau_{15.30} < 0.019$ (Heinrich & Hu 2021). The constraints are shown as isoprobability contours for $x_i(z)$ at any given redshift, with the confidence level indicated by the color (see colorbars), with 68% and 95% confidence contours marked as solid lines. Additionally, the error bars show the uncertainties in the redshifts of start ($x_i = 0.1$), midpoint ($x_i = 0.5$), and end of reionization ($x_i = 0.9$) as 68% (light blue) and 95% (dark blue) confidence intervals. The dashed cyan line indicates the input (fiducial) reionization history (adopted from Kulkarni et al. 2019) that was used to generate the synthetic FBR data

Heimersheim+ 2022

Host galaxy redshift

Host galaxy redshift

317.5 days on-sky time!

FJ+ 2023

317.5 days on-sky time!

FJ+ 2023

F_c: 0.7 & 3.4 Jy ms

317.5 days on-sky time!

FJ+ 2023

Limiting fluence

All-sky rate

F_c: 0.7 & 3.4 Jy ms

Survey	$t_{ m obs} \ m (d)$	$\langle A_{0.5} \rangle \ (\mathrm{deg}^2)$	$\frac{c_s}{(\deg^2 \mathrm{h})}$	$F_{\rm c}$ (Jy ms)	$N_{ m FRB}~(>F_{ m c})$	$R_{\rm FRB} (> F_{\rm c})$ $(10^3 \rm sky^{-1} d^{-1})$
Coherent	317.5	0.19	1448	0.66	6	$8.2^{+8.0}_{-4.6}$
Incoherent (total)	317.5	0.97	6662	3.44	7	$2.1^{+1.8}_{-1.1}$
Incoherent (subtracted)	317.5	0.78	5944	3.44	5	$1.7^{+1.8}_{-1.0}$

~2100 and 8200 FRBs per sky per day!

FRB All-sky Rates → Cosmology

FJ+ 2023

FRB All-sky Rates → Cosmology

- Deficit of low-fluence FRBs
- Due to cosmological effects or progenitor evolution