FRBs and pulsars with MeerKAT and the Nançay Radio Observatory telescopes

Fabian Jankowski Researcher LPC2E, CNRS, Université d'Orléans Contact fabian.jankowski@cnrs-orleans.fr https://fabian.jankowskis.org

Part 1: Discovery of an FRB sample with MeerKAT

On behalf of the MeerTRAP team

F. Jankowski,^{1,2*} M. C. Bezuidenhout,^{1,3} M. Caleb,^{1,4,5} L. N. Driessen,^{1,6} M. Malenta,¹ V. Morello,¹ K. M. Rajwade,^{1,7} S. Sanidas,¹ B. W. Stappers,¹ M. P. Surnis,^{1,8} E. D. Barr,⁹ W. Chen,⁹ M. Kramer,^{9,1} J. Wu,⁹ S. Buchner,¹⁰ M. Serylak,¹¹ and J. Xavier Prochaska^{12,13}

arXiv ID: 2302.10107

Part 1: Discovery of an FRB sample with MeerKAT

On behalf of the MeerTRAP team

F. Jankowski,^{1,2*} M. C. Bezuidenhout,^{1,3} M. Caleb,¹^{4,5} L. N. Driessen,¹⁶ M. Malenta,¹ V. Morello,¹ K. M. Rajwade,^{1,7} S. Sanidas,¹ B. W. Stappers,¹ M. P. Surnis,^{1,8} E. D. Barr,⁹ W. Chen,⁹ M. Kramer,^{9,1} J. Wu,⁹ S. Buchner,¹⁰ M. Serylak,¹¹ and J. Xavier Prochaska^{12,13}

arXiv ID: 2302.10107

FRB open questions

Lorimer+ 2007

- What are their progenitors?
- Are there multiple classes of FRBs?
- What is the physical mechanism that generates the bursts (high brightness temperature)?
- What other applications are there for FRBs?

FRB open questions

Lorimer+ 2007

Shaw Prize 2023! Bailes, Lorimer, McLaughlin

- What are their progenitors?
- Are there multiple classes of FRBs?
- What is the physical mechanism that generates the bursts (high brightness temperature)?
- What other applications are there for FRBs?

The MeerTRAP transient surveys

- Fully-commensal project at MeerKAT telescope
- Real-time data processing and transient detection
- Piggybacks on all LSPs, some open time proposals and DDTs
- Huge amount of time on sky and sky coverage (~20,000 h over 5 yr)
- Excellent sensitivity ($T_{sys} \sim 23$ K, A_e/ $T_{sys} \sim 6.5$ m²/K at L-band)

The MeerTRAP transient surveys

- Fully-commensal project at MeerKAT telescope
- Real-time data processing and transient detection
- Piggybacks on all LSPs, some open time proposals and DDTs
- Huge amount of time on sky and sky coverage (~20,000 h over 5 yr)

- Two surveys at the same time
 - incoherent, wide FoV (~1 deg²), less sensitive
 - coherent, smaller FoV (~0.2 deg²),
 ~5x more sensitive
- Operating since late 2019, in earnest since late 2020

• Excellent sensitivity ($T_{sys} \sim 23$ K, A, $T_{sys} \sim 6.5$ m²/K at L-band)

The FRB sample discovered

Fast Radio Burst types

Complex

FRB localisation

Fabian Jankowski | Kerastari 2023

FRB localisation

- "TABLo" method implemented in "SeeKAT" software
 - Tiaan Bezuidenhout's PhD work
- Based on (non) detection in neighbouring beams

Fabian Jankowski | Kerastari 2023

FRB localisation

- Based on (non) detection in neighbouring beams
 Precision
 - Single-beam: ~0.9 arcmin²

"TABLo" method implemented in

Tiaan Bezuidenhout's PhD work

"SeeKAT" software

- Multi-beam: O(100) arcsec²
- Synthesis image: O(1) arcsec²

Fabian Jankowski Kerastari 2023

Scattering

Scattering

- 3 FRBs show significant scattering
- 1 shows hint
- Several limited by DM smearing
- Close to Kolmogorov

Scattering

- 3 FRBs show significant scattering
- 1 shows hint
- Several limited by DM smearing
- Close to Kolmogorov

Host galaxy association

- Aim: Host galaxy spectroscopic redshift
- Two distance measurements
- Calibrate DM_{cosmic} redshift relation
- Probabilistic Association of Transients to their Hosts (PATH) software

#	p(O x)	p(O)	mi	r ₅₀	
			(mag)	(")	34
1	0.35	0.31	20.1	3.3	0
2	0.17	0.16	20.8	2.8	$\overline{\mathbf{x}}$
3	0.09	0.11	21.2	2.6	Σ
4	0.04	0.08	21.5	3.3	ā

Host galaxy association

- Aim: Host galaxy spectroscopic redshift
- Two distance measurements
- Calibrate DM_{cosmic} redshift relation
- Probabilistic Association of Transients to their Hosts (PATH) software

#	p(O x)	p(O)	mi	r ₅₀	
			(mag)	(")	34
1	0.35	0.31	20.1	3.3	0
2	0.17	0.16	20.8	2.8	$\widehat{\mathbf{x}}$
3	0.09	0.11	21.2	2.6	Σ
4	0.04	0.08	21.5	3.3	ā

For p(M) = 0, $p(O_1|x) = 0.53$ $z_{phot} = 0.45 \pm 0.08$

Host galaxy

ky spectroscopic

heasurements mic – redshift relation sociation of Transients PATH) software

(O)	m _i	r ₅₀	
	(mag)	(")	34
308	20.12	3.32	0 =
160	20.77	2.79	(X
110	21.16	2.59	M)
084	21.45	3.34	d

.53

Host galaxies – MTP0019

- Sub-arcsec localisation
- Galactic vs extragalactic?
- Faint optical source and persistent radio source,7.4" offset
- Galaxy obscured by foreground star. Starforming spiral
- $z_{spec} = 0.066$
- Host DM ~30 units

Host galaxies – FRB 20210410

- Localised from 2-s corr. dump
- Normal galaxy
- $z_{spec} = 0.14$
- Complex field
- MUSE image

arXiv ID: 2302.09754

Host galaxies – FRB 20210410

- Localised from 2-s corr. dump
- Normal galaxy
- $Z_{spec} = 0.14$
- Complex field
- MUSE image

arXiv ID:

Summary

- 2 sub-arcsecond localisations \rightarrow 2 host galaxies
- Another secure PATH association with p(O|x)> 0.8

Post-cursor burst detections

FJ+ 2023

Post-cursor burst detections

FJ+ 2023

Rajwade+ 2022

Post-cursor burst detections

MeerTRAP in prep.

FJ+ 2023

317.5 days on-sky time!

FJ+ 2023

F_c: 0.7 & 3.4 Jy ms

FRB all-sky rates → cosmology

FRB all-sky rates → cosmology

- Deficit of low-fluence FRBs
- Due to cosmological effects or progenitor evolution

Part 2: A multi-telescope single-pulse campaign with the Nançay telescopes & uGMRT

On behalf of Jean-Mathias Grießmeier, Killian Lebreton, Gilles Theureau, Mayuresh Surnis, NenuFAR pulsar team

See Jean-Mathias Grießmeier's talk on Friday morning!

Part 2: A multi-telescope single-pulse campaign with the Nançay telescopes & uGMRT

On behalf of Jean-Mathias Grießmeier, Killian Lebreton, Gilles Theureau, Mayuresh Surnis, NenuFAR pulsar team

Understanding the wide-band single-pulse properties of radio pulsars

- Aims:
 - Test relationship between FRBs and pulsar single-pulses
 - Study single-pulse properties (PE distributions, modulation, SP polarimetry)
 - Others: pulse profiles, modes, RFM, flux densities, spectra
- Focus on mode-changing and subpulse drifting pulsars
 - Master's M2 project Killian Lebreton

A multi-telescope multi-frequency singlepulse campaign

Fabian Jankowski Kerastari 2023

First results – PSR B1822-09 moding

- 550 750 MHz
- 200 MHz bw
- simple RFI excision
- S/N ~ 5000 10,000!

PSR B0823+26 quiet mode detection

uGMRT

- P = 513 ms, DM = 19.48, tau = ~5 Myr, Edot = 4.5 x 10³² erg/s
- Synchronous radio & Xray moding (Hermsen+)
- B, Q, N modes

total

0.500 0.525 0.550

selected

- Faintly detected with • **NenuFAR**
 - Spectral index constraint

Summary

MeerKAT

- 11 new FRBs discovered
- Localised to <1 arcmin²
- Substantial DMs [400, 2000], extragalactic [100, 1900], redshifts [0.1, 2.0]
- S_{peak} > [60, 1400] mJy, *F* > 0.4 Jy ms
- 3 FRBs scattered, 1 hint, limited by smearing
- Several host galaxy associations
- Post-cursor bursts (broad-band rep. pulses)
- Surveys: 317.5 days on sky, >0.7 & 3.4 Jy ms
- Rates: 2.1_{-1.1}^{+1.8} & 8.2_{-4.6}^{+8.0} x 10³ sky⁻¹ d⁻¹

arXiv ID: 2302.10107

- Power law idx flatter than at higher fluences
- Deficit of low-fluence FRBs due to cosmology or progenitor evolution

Nançay telescopes & uGMRT

- B1822-09 moding
- B0823+26 quiet mode detection
- Work ongoing

